Main Article Content

Abstract

This study aims to understand how the political preferences of young voters in the province of West Nusa Tenggara (NTB), Indonesia, are shaped through exposure to political content on Instagram during the 2024 Presidential and Vice-Presidential elections. The primary focus of this research is the phenomenon of the filter bubble, a condition in which Instagram's algorithm curates content aligned with users' behaviors and preferences, thereby limiting the diversity of political information they receive. Adopting a qualitative methodology with a phenomenological approach, the study involved six young voters who were active Instagram users during the campaign period. The findings reveal that the filter bubble phenomenon occurs in three stages: algorithm formation, algorithmic reinforcement of perception, and attitude construction. The respondents' frequent interactions with political content, such as following candidate accounts, liking, sharing, and filtering information, indirectly reinforced their initial political preferences. Although they perceived themselves as receiving information from various sources, they were within a homogenous and enclosed informational space. These findings underscore the critical importance of digital political literacy, enabling young voters to comprehend how algorithms operate and avoid being trapped in an echo chamber that narrows opportunities for dialogue in a digital democracy.

Keywords

Indonesia's 2024 Presidential Election, Instagram Filter Bubble Young Voters

Article Details

How to Cite
Satriyadi, Y., Arzak, M., & Maulidyawati, D. (2025). Instagram Filter Bubbles and Young Voters’ Political Preferences in West Nusa Tenggara, Indonesia: Case on The 2024 Presidential Election. Golden Ratio of Social Science and Education, 5(2), 435–443. https://doi.org/10.52970/grsse.v5i2.1515

References

  1. Andi. (2024). We Are Social & Hootsuite: Data Digital Indonesia 2024. https://andi.link/hootsuite-we-are-social-data-digital-indonesia-2024/
  2. Asosiasi Penyelenggara Jasa Internet Indonesia (APJII). (2024, Februari 7). APJII: Jumlah pengguna internet Indonesia tembus 221 juta orang. https://apjii.or.id/berita/d/apjii-jumlah-pengguna-internet-indonesia-tembus-221-juta-orang
  3. Badan Pusat Statistik. (2025). Jumlah penduduk menurut kelompok umur dan jenis kelamin, 2023. https://www.bps.go.id/en/statisticstable/3/WVc0%20MGEyMXBkVFUxY25KeE9HdDZkbTQzWkVkb1p6MDkjMw==/jumlah-penduduk-menurut-kelompok-umur-dan-jenis-kelamin--2023.html?year=2024
  4. Bozdag, E., & Van Den Hoven, J. (2015). Breaking the filter bubble: democracy and design. Ethics and information technology, 17(4), 249-265, https://link.springer.com/article/10.1007/s10676-015-9380-y
  5. CSIS. (2024). Pemilih muda dalam pemilihan umum 2024: Dinamis, adaptif, dan responsif. https://www.csis.or.id/publication/pemilih-muda-dalam-pemilihan-umum-2024-dinamis-adaptif-dan-responsif/
  6. Creswell, J. W. (2013). Qualitative inquiry and research design: Choosing among five approaches (3rd ed.). Sage.
  7. Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications.
  8. Geschke, D., Lorenz, J., & Holtz, P. (2018). The triple-filter bubble: Using agent-based modelling to test a meta-theoretical framework for the emergence of filter bubbles and echo chambers. British Journal of Social Psychology, 58(1), 129-149, https://doi.org/10.1111/bjso.12286
  9. Haim, M., Graefe, A., & Brosius, H. B. (2018). Burst of the Filter Bubble?: Effects of personalization on the diversity of Google News. Digital Journalism, 6(3), 330–343. https://doi.org/10.1080/21670811.2017 .13 38145
  10. Haryanto. (2024, Januari 31). APJII: Jumlah pengguna internet Indonesia tembus 221 juta orang. DetikInet. https://inet.detik.com/cyberlife/d-7169749/apjii-jumlah-pengguna-internet-indonesia-tembus-221-juta-orang
  11. Heryanto, G. G. (2018). Media Komunikasi Politik Relasi Kuasa Media di Panggung Politik. Yogyakarta: IRCiSoD
  12. Komisi Pemilihan Umum. (2023). Calon Presiden dan Wakil Presiden Indonesia. https://infopemilu.kpu.go.id/Pemilu/Pwp/Pengundian_nomor_urut
  13. Lusi, R. M. E. (2024). Komunikasi Digital dan Keterlibatan Politik: Menilai Pengaruh Platform Online Terhadap Opini Publik. J-CEKI: Jurnal Cendekia Ilmiah, 3(3), 782–788. https://doi.org/https://doi.org/10.56799/jceki.v3i3.3386
  14. Milana, R., & Muksin, N. N. (2021). Kampanye politik calon legislatif wanita: Studi fenomenologi pada pemilihan umum 2019. KAIS Kajian Ilmu Sosial, 2(1), 158–167. https://doi.org/10.24853/kais.2.1.158-168
  15. Morse, J. M. (2000). Determining sample size. Qualitative Health Research, 1, 3–5. https://doi.org/10.1177/104973200129118183
  16. Moustakas, C. (1994). Phenomenological Research Methods. Sage Publications.
  17. Muhidin, A., Dewi, W. U., & Nurkinan, N. (2022). Komunikasi politik Partai Keadilan Sejahtera pada masyarakat non Muslim di Kabupaten Karawang. Jurnal Ilmiah Wahana Pendidikan, 8(13), 12–22.
  18. Nurussa’adah, E. (2020). Wanita dan komunikasi politik pada pemilihan umum Daerah Istimewa Yogyakarta. Jurnal Ilmu Komunikasi, 18(1), 111–123. https://doi.org/10.5281/zenodo.6960999
  19. Pandya, T., & Nurhaqiqi, H. (2024). Fenomena Filter Bubble di X dalam Membangun Partisipasi Politik Gen Z Saat Periode Kampanye Pilpres 2024. JIIP (Jurnal Ilmiah Ilmu Pendidikan). 7(9), 9787-9793, https://doi.org/10.54371/jiip.v7i9.5026
  20. Pariser, E. (2011). The Filter Bubble: What the Internet Is Hiding from You. New York: The Penguin Press.
  21. PKBI. (2023, September 2). Analisis hasil survei literasi digital di NTB dan NTT. https://pkbintb.or.id/wp-content/uploads/2023/09/2.-PKBI_RCCE_Rapid-Assesment.pdf
  22. Riendani, C.R., S, I.R.A., Abhinaya, A., Abdillah, A.R. & Mufadhol, B.D. (2024). Pengaruh Algoritma Media Sosial Terhadap Selektivitas Konsumsi Berita Politik Pada Generasi Z Di Indonesia. Jurnal Pustaka Cendekia Hukum Dan Ilmu Sosial, 2(3), 224–228. https://doi.org/10.70292/pchukumsosial.v2i3.68
  23. Rogers, E. M., dan Storey, J. D. (1987). Communication Campaign. New Burry Park: Sage
  24. Romadlona, A. A., & Triyono, A. (2024). Pengaruh Filter Bubble Youtube Terhadap Pembentukan Perilaku Fanatisme Politik Identitas pada Pilpres 2024. https://eprints.ums.ac.id/127812/2/Naskah%20Publikasi.pdf
  25. Safitri, D., Ramdhani, A., Tridewi, S., & Suciati, W. (2024).Joget Prabowo dan Filter Bubble: Tinjauan Terhadap Respon Masyarakat Pasca Pemilu di YouTube CNN Indonesia. Komunikasiana Journal of Communication Studies. 6(2), 163–176. http://dx.doi.org/10.24014/kjcs.v6i2.33856
  26. Samsu. (2017). Metode penelitian: Teori dan aplikasi penelitian kualitatif, mix methods, serta research dan development. Jambi: Pusaka.
  27. Tempo. (2024), KPU Tetapkan DPT Pemilu 2024 dengan Rincian 52 Persen Pemilih Muda. https://www.tempo.co/infografik/infografik/kpu-tetapkan-dpt-pemilu-2024-dengan-rincian-52-persen-pemilih-muda-233238
  28. Wulandari, V., Rullyana, G., & Ardiansah, A. (2021). Pengaruh Algoritma Filter Bubble dan Eco Chamber Terhadap Perilaku Penggunaan Internet. Berkala Ilmu Perpustakaan dan Informasi. 17(1), 98-111, https://doi.org/10.22146/bip.v17i1.423