Main Article Content

Abstract

TAM (Technology Acceptance Model) is a technology application model that adopts the Theory of Reasoned Action (TRA) from Fishbein and Ajzen (1975) which is used to see the level of use of respondents in receiving information technology (Kaffashan Kakhki et al., 2020). This TRA is composed of the basic assumption that every human being behaves consciously in self-control and considers the use of available information for use in his life. Ajzen and Fishbein (1975) state that two determining factors can influence a person's intention in doing a certain act, the first is related toattitude towards behavior) and the next influence is social influence, namely subjective norms (subjective norms). This study uses a bibliometric literature review approach with a sample mapping literature of 17 articles regarding planned behavior theory approaches reference articles from 2020 - 2021 under Scopus indexed journal. Our proposition state result the correlation Theory of planned behavior theory and TAM in the aspect of the field of management (e.g., marketing, Technology, E-Commerce) make a positive contribution as a grounded theory to explain the variable antecedent and also its correlation to other theories.

Keywords

Technology Acceptance Model Marketing Theory Planned Behavior E-Commece

Article Details

How to Cite
Banjarnahor, A. R. (2021). Technology Acceptance Model and Theory of Planed Behavior: Mapping Literature Review. Golden Ratio of Mapping Idea and Literature Format, 1(2), 134–168. https://doi.org/10.52970/grmilf.v1i2.91

References

  1. Alalwan, A. A., Baabdullah, A. M., Rana, N. P., Tamilmani, K., & Dwivedi, Y. K. (2018). Examining adoption of mobile internet in Saudi Arabia: Extending TAM with perceived enjoyment, innovativeness and trust. Technology in Society, 55(June), 100–110. https://doi.org/10.1016/j.techsoc.2018.06.007
  2. Carmeli, A., Yitzhak‐Halevy, M., & Weisberg, J. (2009). The relationship between emotional intelligence and psychological wellbeing. Journal of Managerial Psychology, 24(1), 66–78. https://doi.org/10.1108/02683940910922546
  3. Chi, T. (2018). Understanding Chinese consumer adoption of apparel mobile commerce: An extended TAM approach. Journal of Retailing and Consumer Services, 44(July), 274–284. https://doi.org/10.1016/j.jretconser.2018.07.019
  4. Davies, S. J., & Fennelly, L. J. B. T.-T. P. P. O. (Second E. (Eds.). (2020). Index (pp. 507–524). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12-817748-8.09991-0
  5. Fayad, R., & Paper, D. (2015). The Technology Acceptance Model E-Commerce Extension: A Conceptual Framework. Procedia Economics and Finance, 26(961), 1000–1006. https://doi.org/10.1016/s2212-5671(15)00922-3
  6. Fernandes, S., Venkatesh, V. G., Panda, R., & Shi, Y. (2021). Measurement of factors influencing online shopper buying decisions: A scale development and validation. Journal of Retailing and Consumer Services, 59(January), 102394. https://doi.org/10.1016/j.jretconser.2020.102394
  7. Gao, B., & Huang, L. (2019). Understanding interactive user behavior in smart media content service: An integration of TAM and smart service belief factors. Heliyon, 5(12), e02983. https://doi.org/10.1016/j.heliyon.2019.e02983
  8. Halimi, F., AlShammari, I., & Navarro, C. (2021). Emotional intelligence and academic achievement in higher education. Journal of Applied Research in Higher Education, 13(2), 485–503. https://doi.org/10.1108/JARHE-11-2019-0286
  9. Hamid, A. A., Razak, F. Z. A., Bakar, A. A., & Abdullah, W. S. W. (2016). The Effects of Perceived Usefulness and Perceived Ease of Use on Continuance Intention to Use E-Government. Procedia Economics and Finance, 35(October 2015), 644–649. https://doi.org/10.1016/s2212-5671(16)00079-4
  10. Heikkilä, J.-P., Rentto, O., & Feng, Y. (2017). Aiming for Strategic e-HRM: Motives and Consequences of e-HRM Implementation in an MNC. Electronic HRM in the Smart Era, 173–199. https://doi.org/10.1108/978-1-78714-315-920161007
  11. Ho-Sam-Sooi, N., Pieters, W., & Kroesen, M. (2021). Investigating the effect of security and privacy on IoT device purchase behaviour. Computers and Security, 102, 102132. https://doi.org/10.1016/j.cose.2020.102132
  12. Huang, Z., & Benyoucef, M. (2017). The effects of social commerce design on consumer purchase decision-making: An empirical study. Electronic Commerce Research and Applications, 25, 40–58. https://doi.org/10.1016/j.elerap.2017.08.003
  13. Jokar, N. K., Noorhosseini, S. A., Allahyari, M. S., & Damalas, C. A. (2017). Consumers’ acceptance of medicinal herbs: An application of the technology acceptance model (TAM). Journal of Ethnopharmacology, 207(April), 203–210. https://doi.org/10.1016/j.jep.2017.06.017
  14. Kaffashan Kakhki, M., Hadadian, A., Namdar Joyame, E., & Malakooti Asl, N. (2020). Understanding librarians’ knowledge sharing behavior: The role of organizational climate, motivational drives and leadership empowerment. Library & Information Science Research, 42(1), 100998. https://doi.org/https://doi.org/10.1016/j.lisr.2019.100998
  15. Kwak, J., Zhang, Y., & Yu, J. (2019). Legitimacy building and e-commerce platform development in China: The experience of Alibaba. Technological Forecasting and Social Change, 139(June 2018), 115–124. https://doi.org/10.1016/j.techfore.2018.06.038
  16. Lestari, S. D., Leon, F. M., Widyastuti, S., Brabo, N. A., & Putra, A. H. P. K. (2020). Antecedents and Consequences of Innovation and Business Strategy on Performance and Competitive Advantage of SMEs. The Journal of Asian Finance, Economics and Business, 7(6), 365–378.
  17. Mahzan, N., & Lymer, A. (2014). Examining the adoption of computer-assisted audit tools and techniques. Managerial Auditing Journal, 29(4), 327–349. https://doi.org/10.1108/MAJ-05-2013-0877
  18. Marpaung, F. K., Dewi, R. S., Grace, E., Sudirman, A., & Sugiat, M. (2021). Behavioral Stimulus for Using Bank Mestika Mobile Banking Services: UTAUT2 Model Perspective. Golden Ratio of Marketing and Applied Psychology of Business, 1(2), 61–72.
  19. Muñoz-Leiva, F., Climent-Climent, S., & Liébana-Cabanillas, F. (2017). Determinantes de la intención de uso de las aplicaciones de banca para móviles: una extensión del modelo TAM clásico. Spanish Journal of Marketing - ESIC, 21(1), 25–38. https://doi.org/10.1016/j.sjme.2016.12.001
  20. Pantano, E., Rese, A., & Baier, D. (2017). Enhancing the online decision-making process by using augmented reality: A two country comparison of youth markets. Journal of Retailing and Consumer Services, 38(February), 81–95. https://doi.org/10.1016/j.jretconser.2017.05.011
  21. Peña-García, N., Gil-Saura, I., Rodríguez-Orejuela, A., & Siqueira-Junior, J. R. (2020). Purchase intention and purchase behavior online: A cross-cultural approach. Heliyon, 6(6). https://doi.org/10.1016/j.heliyon.2020.e04284
  22. Qiu, L., & Li, D. (2008). Applying TAM in B2C E-Commerce Research: An Extended Model. Tsinghua Science and Technology, 13(3), 265–272. https://doi.org/10.1016/S1007-0214(08)70043-9
  23. Sembada, A. Y., & Koay, K. Y. (2019). How perceived behavioral control affects trust to purchase in social media stores. Journal of Business Research, (September). https://doi.org/10.1016/j.jbusres.2019.09.028
  24. Venkatesh, S., Sivapirakasam, S. P., Sakthivel, M., Ganeshkumar, S., Mahendhira Prabhu, M., & Naveenkumar, M. (2021). Experimental and numerical investigation in the series arrangement square cyclone separator. Powder Technology, 383, 93–103. https://doi.org/https://doi.org/10.1016/j.powtec.2021.01.031
  25. Xia, M., Zhang, Y., & Zhang, C. (2018). A TAM-based approach to explore the effect of online experience on destination image: A smartphone user’s perspective. Journal of Destination Marketing and Management, 8(May 2017), 259–270. https://doi.org/10.1016/j.jdmm.2017.05.002
  26. Yoon, C. (2018). Extending the TAM for Green IT: A normative perspective. Computers in Human Behavior, 83, 129–139. https://doi.org/10.1016/j.chb.2018.01.032