The Effect of Emotional Intelligence on Team Performance: Case study in Government Hospital

Lukman S*

*Department of Management, Faculty of Economics, Universitas Bosowa, Makassar, Indonesia.
Email: lukman.s@universitasbosowa.ac.id

Abstract: Organizational development requires human resources. Professional organizations manage systems and organizational mechanisms of existing resources to support flexible change responses. Hospitals, as one of the service industries with a very complex business process, certainly have enormous potential for optimization and efficiency improvements. The study aims to explore the relationship between emotional intelligence and team performance during the inter-institutionalized collaboration work process. This study was conducted in hospitals in South Sulawesi and Central Sulawesi Province. The study lasted for 6 (six) months in 2017. The sampling was done using cluster method and stratified random sampling based on Hospital Type and level of Health Officers. The data analysis approach used in this study was Partial Least Square (PLS) using WarpPLS software. The results show that emotional intelligence significantly and positively affected the team performance with a path coefficient value of 0.138 and a p-value (of 0.050). Based on the data analysis results, there is a significant direct influence between Emotional intelligence and team performance.

Keywords: Emotional Intelligence; Team Performance; Government Hospital.

JEL Classification Code: M12, G21, C38, O15

1. INTRODUCTION

Hospitals, as one of the service industries with a very complex business process, certainly have quite a large potential for optimization and efficiency improvements (Gray & Boshoff, 2021). The public demands better health services, indirectly requiring the hospital to develop continuously (Rhyne, 1988). In order to improve the quality of health services to the customer, the work should be done effectively and efficiently, and it requires continuous improvement with as little as possible level of resistance (Ghosh & Sallam, 1994). Indonesia’s hospitals and technical healthcare services have rapidly expanded in the last decade. In 2012, the number of public hospitals was 1.608; by 2013, the number of hospitals was 1.725 (Central Bureau of Statistics, 2015). The rapid growth in health services may cause unprepared human resources, which can threaten the quality of health services (Khatri et al., 2006). The level of knowledge can affect the quality of health services and the results of hospital officers’ performance (Baker, 2011; Bate & Robert, 2002). To integrate the existing resources, the employees’ performance must be maximized (Bate & Robert, 2002). A series of hospital operational policies and operational standards require the collaboration of every part of the hospital’s department (Tang et al., 2013) so that it is proposed between the hospital departments to create the most significant benefit for health services from limited resources (Eriksen et al., 1999; Frank et al., 1992).

The quality of the collaboration and performance of these interdepartmental teams heavily depend on the knowledge-sharing function within the collaboration team (van Sluisveld, Zegers, Natsch, & Wollersheim, 2012). Team performance also reflects the attitude of cooperation, competence, and culture behind each participating institution and team members (Tang et al., 2013). Like any other professional community, team conflicts will likely exist in the participating institutions and even among the members of the hospital’s high-status sections (Davis et al., 2007). Such team conflicts, like competitions and varieties, usually damage the quality of interaction and achievement.
collaboration (Jehn & Chatman, 2000). In addition, the participants’ emotional intelligence is the team performance’s important dominating factor during the growth process (Birx et al., 2011).

2. RESEARCH METHOD AND MATERIALS

This research employs an explanatory pattern to thoroughly explain the position of the variables studied and the relationship between one variable and other variables. The study, conducted in hospitals in South Sulawesi and Central Sulawesi Province, was a comprehensive endeavor that lasted for 6 (six) months in 2017. The sampling was done using a cluster method and stratified random sampling, based on Hospital Type and level of Health Officers, to ensure a representative sample. The data analysis approach used in this study was Partial Least Square (PLS) using WarpPLS software, a robust method for analyzing complex relationships. The research framework, illustrated in Figure 1, provides a clear overview of the study’s structure and methodology.

3. RESULTS AND DISCUSSION

3.1. Validity and Reliability Testing

This research employed questionnaires to obtain the data. Some parts of the questionnaire were perceptions with a Likert scale. Therefore, a test was required to determine whether the questionnaire was valid and reliable. The instrument validity test used the Pearson Correlation analysis tool. If the Pearson Correlation value (r) is more significant than 0.30, it indicates that the item is valid and eligible for exclusion at a later stage. On the other hand, if the Pearson Correlation value (r) is less than 0.30, it indicates that the item is invalid. Meanwhile, the instrument reliability was tested with Cronbach’s alpha analysis tool. If the value of Cronbach’s alpha coefficient is above 0.60, it indicates a reliable instrument; otherwise, if the value of Cronbach’s alpha coefficient is below 0.60, it indicates the instrument is not reliable.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Indicators</th>
<th>Validity</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emotional Intelligence (X1)</td>
<td>X11</td>
<td>0.421</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X12</td>
<td>0.423</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X13</td>
<td>0.472</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X14</td>
<td>0.446</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X15</td>
<td>0.422</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X16</td>
<td>0.373</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X17</td>
<td>0.509</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>X18</td>
<td>0.375</td>
<td>Valid</td>
</tr>
<tr>
<td>Team Performance (Y3)</td>
<td>Y31</td>
<td>0.626</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Y32</td>
<td>0.702</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Y33</td>
<td>0.664</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Y34</td>
<td>0.612</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Y35</td>
<td>0.620</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Y36</td>
<td>0.597</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Y37</td>
<td>0.479</td>
<td>Valid</td>
</tr>
<tr>
<td></td>
<td>Y38</td>
<td>0.612</td>
<td>Valid</td>
</tr>
</tbody>
</table>

Based on Table 1, all indicators on each variable have a correlation value greater than 0.30; therefore, the research instrument is declared valid. Meanwhile, Cronbach’s alpha value for all variables is more significant than 0.60; thus, the research instrument is reliable.
3.2. Goodness of Fit Test

The Goodness of Fit test used predictive-relevance (Q2) values. The calculation result showed a predictive relevance value of 0.787 or 78.7%. Therefore, the model has relevant predictive value. The predictive relevance value of 78.7% indicates that the diversity of data that the model can explain is 78.7%. In other words, the information contained in the data can be explained by 78.7% through the model. Meanwhile, the remaining 21.3% is explained by different variables (not in the model) and errors. Hair Ringle (2011) states that the value of Q2 > 75% indicates a perfect model and can be interpreted for further hypothesis testing (Hair, Sarstedt, Ringle, & Mena, 2012).

3.3. Partial Least Square Analysis Result

Inner model testing (structural model) essentially tested the research hypothesis. Hypothesis testing was done using a t-test (TStatistic) on each partial direct effect path (Marcoulides, 1998). The results of the complete analysis are contained in the results of the WarpPLS analysis, which can be seen in Table 1. The following table presents the results of hypothesis testing.

3.4. Goodness of Fit Test

The Goodness of Fit test used predictive-relevance (Q2) values. The calculation result showed a predictive relevance value of 0.787 or 78.7%. Therefore, the model has relevant predictive value. The predictive relevance value of 78.7% indicates that the diversity of data that the model can explain is 78.7%. In other words, the information contained in the data can be explained by 78.7% through the model. Meanwhile, the remaining 21.3% is explained by other variables (which are not in the model) and errors. Hair Ringle (2011) states that the value of Q2 > 75% indicates a perfect model and can be interpreted for further hypothesis testing (Hair et al., 2012).

3.5. Partial Least Square Analysis Result

Inner model testing (structural model) essentially tested the research hypothesis. Hypothesis testing was done using a t-test (TStatistic) on each partial direct effect path (Marcoulides, 1998). The results of the complete analysis are contained in the results of the WarpPLS analysis, which can be seen in Table 1. The following table presents the results of hypothesis testing.
In direct effect testing on emotional intelligence and team performance, the path coefficient value of 0.138 was obtained with a p-value of 0.050. Since the p-value was equal to 0.05, emotional intelligence had a significant direct effect on Team Performance (Table 2). Given a path coefficient marked positive, indicating that the relationship was positive. This means that the higher the emotional intelligence, the higher the team performance.

3.6. Discussion

Referring to the research data, the emotional intelligence variable empirically significantly affects team performance. The direct effect testing between Emotional Intelligence and Team Performance obtained the path coefficient value of 0.138, with a p-value of 0.050. Since the p-value was equal to 0.05, there was a significant direct effect between Emotional Intelligence and Team Performance. Given a path coefficient marked positive, indicating that the relationship was positive. This finding indicates that the higher the Emotional Intelligence, the higher the Team Performance. This aligns with Beam (2012), who stated that as someone’s Total EQ Score increases, so does his/her team’s cohesion assessment (Marshall & Beam, 2021). Michael (2007) said that the findings show that a team’s emotional intelligence predicts more robust positive performance in heterogeneous groups than homogeneous groups (Anger, 2005). The result is discussed concerning the implications of group construction and for the study of work group diversity. Other facts also suggest creating a factor (shown by a vector) that moves the team member toward the reception of the spectrum and repeats the sequence. Constantly monitoring employees’ reactions is essential because there is evidence that change initiatives fail due to a lack of attention to long-term human factors (Shamir & Eilam, 2005).

This research found that the team leader’s emotional intelligence impacted the team’s performance through the mediation effect of the team’s emotional level and the team members’ creativity (Melita et al., 2003). It is also supported by Brown’s findings (2002) that transactional/transformational leadership style is a strong predictor of leadership effectiveness and ability (Spinelli, 2006). In addition, transactional and transformational leadership styles have a symbiotic relationship with emotional intelligence in the domain of leadership style (Hay, 2000).

However, another fact that Hansenne (2008) states is that the EI is assessed using a modified version of the Schutte Emotional Intelligence Scale and the Cohesiveness with Group Cohesiveness Scale (Mikolajczak et al., 2008). Finally, the performance of the nurse team was measured at four different levels: job satisfaction. The results showed that healthcare quality correlated positively with emotional regulation. Emotional regulation was also positively correlated with group cohesion. Surprisingly, emotional assessment was negatively correlated with the quality of health care provided by the team. This result indicates that EI and, more specifically, Emotional Regulation can provide a new way to improve team cohesion (Rapisarda, 2002).

4. CONCLUSION

Based on the data analysis, emotional intelligence has a significant direct effect on team performance. Emotional intelligence has a real impact on team performance. However, all health officers in the hospital still need continuous and comprehensive handling. Knowledge sharing, team conflict, and structure mechanisms in this research proved to strengthen the effect of emotional intelligence on team performance. New processes and ideas, continuous innovation, application of expertise, cognition, role, key ideas, interpersonal relationships, division of labor, hierarchy of authority, rights and obligation rules, and interpersonal relationships can influence team performance in the workplace. According to the research results, employees who apply these values when working can show good team performance. Therefore, institutions should also ensure that these indicators are included in every team member development activity.
REFERENCES

Model in the Hospital Administrative Environment. Hospital Topics, 84(2), 11–19. https://doi.org/10.3200/HTPS.84.2.11-19
